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ABSTRACT

An inverse design procedure for airfoils, based on hodograph tech-

niques, has been developed. For subcritical flows the subsonic portion

of the pressure distribution is prescribed; for supercritical flows the

stream function on the sonic line is given instead of the supercritical

portion of the pressure distribution. In the special variables we use,

the equation for the stream function may be solved iteratively using a

fast Poisson solver, for the subsonic portion of the flow; for super-

critical flows, the supersonic portion is calculated using a character-

istic calculation. The results are then mapped back to the physical

plane to determine the airfoil shape. Both subcritical and supercritical

results are presented. They show good agreement with the direct compu-

tation of the flow past the designed airfoil.
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INTRODUCTION

In the last decade there has been much interest in transonic aero-

dynamics. In the case of commercial aircraft this interest stems mainly

from the requirement for increased efficiency. This requirement has

driven the operating conditions of aircraft compressors, turbines, and

propellers, as well as the aircraft themselves, into the transonic regime.

Unfortunately once local regions of supersonic flow occur shock waves are

likely, with the attendant wave drag and boundary-layer separation losses.

A shock-free flow would, of course, be desirable as it avoids these losses.

But in the mid 1950s Morawetz1 showed that shock-free, two-dimensional,

irrotational near-sonic flows are mathematically isolated (i.e., any small

arbitrary changes in the upstream flow or airfoil shape will lead to the

formation of a shock wave). As a consequence, it was felt for some time

that shock-free flows could not be achieved in practice. Subsequent wind

tunnel research carried out by Pearcey,2 Whitcomb and Clark3 and Spee
4

did, however, lead to the development of practical "shock-free" airfoil

sections. Parallel with these efforts, shock-free supercritical airfoil

flows have been generated in the hodograph plane by Nieuwand,5 Bauer,

Garabedian and Korn,6 Boerstoel and Huizing,7 and Sobieczky.8 More

recently, the development of sophisticated numerical codes for the

analysis of transonic flow fields has led to the design of both airfoils

9and wings by numerical optimization (see, e.g., Hicks and Henneg).

The design procedure for shock-free supercritical airfoils developed

by Garabedian uses the method of complex characteristics and is mathe-

matically elegant. However, even in its user-oriented version6 practical

use of the method is limited to especially trained designers. Neverthe-

less, some very useful test cases for supercritical airfoils and cascades
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were given which have served well as examples for various analysis codes.

Another indirect approach was developed by Sobieczky.8 Here the rheo-

electric analogy to the compressible flow equations was used to define a

number of transonic airfoil flows. The use of an electric setup, of

course, did not provide for economical use of the method, but did lead to

a greater understanding of this indirect approach, which had two fruitful

consequences: 1) By replacing the electric analog by a digital computer

using a fast elliptic solver, we could use all the experience of the analog

method concerning boundary conditions that result in interesting airfoil

designs. 2) With the development of numerical algorithms for direct non-

linear analysis a new method for direct transonic design was developed.
10

Its underlying "fictitious gas concept" is the physical equivalent of the

mathematical formulation of the indirect boundary-value problem. The

direct approach has the advantage that it can be used also for three-

dimensional wings. A description of these two families of methods applied

to airfoils is given in Ref. (11).

The design procedure invoked here is an extension and improvement of

method 1 above; it requires less than a minute of CYBER 175 CPU time for

a supercritical airfoil, and even less for a subcritical airfoil. While

the present method is limited to two-dimensional flow, it does allow the

user to specify a desired pressure distribution and achieve it with little

difficulty through an iterative process.

FORMULATION

The mathematical formulation of the problem assumes a steady, two-

dimensional, irrotational flow of a perfect gas. The basic equations of

motion are

.

f



4

j-opq-o, (0)

V x _q = 0, (2)

and

-P- = constant. (3)m
We satisfy the first of the equations by introducing the usual stream

I function

I = Pu pq cos(B),

m x - Pv = Pq Sin(e). (4)

We satisfy the second by defining a potential function, *, such that

I__ = 9.

orI
u x , v y (5)

Equations (4) and (5) can be combined to give

I x  y

= - (6)Oy PO x t

which can be reduced to a single equation in either p or *, viz.,

*i (-X ,x +,, , x (:X) *,
I (7)

xx +Pyy " (-) y(
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I with

p p(q), q = IV l. (8)

Equations (7) are elliptic for M < 1 (subsonic flow), hyperbolic for M > 1

I (supersonic flow), and parabolic where M = 1 (sonic flow). Figure (1) is

a sketch illustrating a shock-free supercritical flow field depicting

subsonic and supersonic regions of the flow.

I To solve either of equations (7) two boundary conditions must be pro-

vided. The first of these represents the behavior of the flow in the far

l field; the second represents the flow tangency condition on the airfoil

i surface. In the inverse-design procedure under study here, the pressure

distribution is used as an input rather than the airfoil coordinates and

j our goal is to find the shape that an airfoil must have to achieve this

input pressure distribution. Accordingly for the inverse problem, neither

I a Neumann boundary condition for 0 nor a Dirichlet boundary condition for

l 'p can be prescribed on the airfoil surface since it is unknown. This is

in contrast to direct analysis methods where the airfoil geometry is known

l prior to computational procedure. The Inverse problem of a prescribed

pressure on a given airfoil is ill-posed. Here we prescribe a general

pressure distribution and find an airfoil that has a pressure distribution

g like that prescribed.

The Hodograph Transformation

In two-dimensional irrotational flow the nonlinear equations (7) for

I steady flow can be rendered linear by changing the role of the dependent

I and independent variables. We introduce the complex velocity

u iv qe (9)

-------- .,.i -i -.-ammm ml -l
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Iwith u, v, q and 6 being functions of a complex variable
z = x + iy. (10)

We then have, using equations (6, 9) in differential notation,

+ I + dP = (u - Iv)(dx + idy) (11)1 -16

= qe dz

and hence, with q and 6 as independent variables, and p = p(Ivl) we find

K I ie

1 +(12)

I Differentiating the first equation of (12) with respect to q and the second

with respect to e and then equating real and imaginary parts, we obtain the

hodograph equations, viz.,

3eO p aq'

(13)

8q p1 38

It Is essential in the present design procedure to introduce the

Prandtl-Meyer function, v, defined by

I fq 11 _ M2 g (14)

I q q

in place of the velocity q in equations (13), which then take their canonical

I
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I form and become

I = K(v)(

I V = ±K(v) p"

Here the ± signs refer to supersonic and subsonic conditions respectively and

K(\) = K[v(M)] : [11 - M2 1]1/2/p[q(M)]. (15a)

A typical hodograph representation (with v, e as independent variables) of

the flow field sketched in Figure (1) is depicted in Figure (2a).

The airfoil maps into a closed curve containing the stagnation point S

I at infinity and the sonic line at points a, b. The analytical structure of

i near v = 0 and a smooth curvature of the airfoil at the sonic line require

the local structure of the airfoil contour near the e-axis as sketched in

I Figure (2b). This weakly singular behavior is of importance in the solution

of the boundary-value problem, with * given along the elliptic boundary

I (shaded line in detail of Figure 2). The region of the flow in Figure (1)

i bounded by the dotted contour and the airfoil represents a region in which

every point has a velocity and flow angle equal to that of some other point

I outside this region, e.g., = qf and ee = Of* Therefore points e and f

will correspond to the same point in the hodograph plane, which must be

I considered as a Riemann surface of two sheets with a branch cut (lines dn,

i cn) connecting them. The local nature of this flow was studied by Lighthill 12

in his hodograph study of compressible flows around lifting airfoils.

I Because the governing equations (15) are linear in the hodograph plane,

there is usually no particular difficulty in finding solutions to them, by

Inumerical methods if necessary. However, the presence of the second sheet

of the two-sheeted Riemann surface and the apriori unknown location of the

Y 1
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Iairfoil surface represent major obstacles in solving the governing equations
in this plane. From equations (15) it can be shown that the second-order

derivatives for both p and either are the Laplacian or the wave operator

depending on whether or not the flow is subsonic or supersonic. Thus the
equations for the subsonic flow are invariant in form under a conformal

m transformation.

Subsonic Flow Domain

We proceed by assuming a conformal map of the subsonic portion of the

Itwo-sheeted Riemann surface of Figure (2) into the unit circle of Figure (3).

I(The double-connected infinite domain is mapped into a finite simply con-
nected domain through an exponential mapping followed by a square root

mapping to unfold the Riemann sheets.) Here part of the boundary of the

unit circle corresponds to the airfoil surface wetted by subsonic flow; the

remaining part corresponds to the sonic line. The segment comprising the

sonic line, wb -< a is chosen and the Mach number (or pressure) on the
subsonic part of the airfoil prescribed. On the sonic line segment the

I Mach number is of course 1. Because Bernoulli's equation, viz.,

I q2 + dp = constant

Ii provides a correspondence between the values of p and the local sound

speed, we may formulate the inverse-design problem in terms of either M or

p, and our choice of M is only a matter of convenience. A typical choice

of M for a subcritical airfoil with a cusped trailing edge is illustrated

in Figure (4).

IWith the Mach number given on the boundary of the unit circle, and
with the subsonic portion of the flow inside the circle, we take advantageI

I



of the fact that the mapping to the Eo-plane is conformal. Thus, the

Prandtl-Meyer function v, and the flow deflection angle, e, are conjugate

I harmonics, i.e.,

l F( o) = v + ie

or

2 V( o) = 0, (16)

Sv2e(o ) = O. (17)

I Here F( 0 ) is the mapping function and o = re W with r and w being the

radial and angular coordinate measured in the Eo-plane. Boundary conditions

Sfor equation (16) are provided through the use of equation (14) relating v

and M; that is, knowing the Mach number distribution on the unit circle, we

I calculate v employing equation (14). We then solve Laplace's equation for

I~v inside the unit circle using Fourier series, which accordingly determines
Uthe flow deflection angle e to within a constant. However, the Prandtl-

I Meyer function v is logarithmically singular in q(v = log(q)) at the

stagnation point, S, which, for convenience, is positioned at Eo = -l in

I the 0-plane. Therefore, in order to solve the boundary value problem for

v with Fourier series we need first to subtract the logarithmic behavior

at point S. This is done as follows:

I let F (o) - F(& ) - log( o + 1),

I G( 0) - V(90) - Re{log({0 + M,

I H(&0) -e(go) - Im{log(&0 + 1)1,

J then equations (16, 17) become

I g
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I V2G(o) = O, (18)

I V2H(Co) = 0. (19)

H ere Re{ .... } and Im{ .... } are the real and imaginary parts of log(f0 + 1)

respectively. Equation (18) is then solved inside the unit circle using

I Fourier series subject to the following boundary condition

j G(r=l,w) = v(I) - Re{log(e iW + 1)1.

i Having obtained the solution for G(r,w) in the unit circle, we then add back

the logarithmic singularity to preserve the singular behavior of v at the

stagnation point.

Reformulating the definitions for the partial derivatives in equations

I (15) in terms of r and w we obtain

I r K(v)

l and (20)

o =rK(v) *r"

Equations (20) can be reduced to a single equation in either p or *.

Eliminating * through cross differentiation of equations (20), we find the

I equation for ip

I r2*rr + rVr + * a f(M){r2Vr~r + V }" (21)

Here K is a function of M through equation (15a), M is a function of v

through equation (14), and

I ( y + 5MI (I. M2)3 /2. (21a)I

I
- -. r



Equation (21) is the &o-plane counterpart of the physical-plane equation

(7) for the stream function. The transformation to hodograph variables V,

I e, followed by a conformal transformation to the (-plane results in a linear

i second-order partial differential equation for ip. In addition to this

linearity, the major advantages of these two transformations are the unfold-

ing of the two-sheeted hodograph surface to a single sheet, and the repre-

sentation of the subsonic portion of an unknown airfoil by a unit circle. But an

I these advances are not without attendant complexities, albeit minor ones.

These difficulties include the presence of point "I" Figure (3) representing

the far field inside the unit circle, at which the stream function is

I singular, and the singularity in f(M) in equation (21a) at M = 1. The first

of these minor difficulties is circumvented through a coordinate transforma-

I tion of the 0-plane into the &-plane sketched in Figure (5). The

transformation employed is the bilinear transformation which has the form
, l A + B o

re C . & - (22)

Here

A = 0 (01 1),

B = -( 1 0

C 0

I)

I~c = ((o -1),

I

i and

O (l-i ).D 0o

The second difficulty Is the singular behavior at f(M) at M 1 1, which

I 9
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implies that @r c '-/ on the sonic line. This is circumvented by assuming

that the Mach number on the sonic line is slightly less than 1, e.g.,

M sonic = 0.995 and using the local behavior of i to extend the results to

M 1.

With F and W as new independent variables, the governing equation for

I i becomes

r 2, + r. + =f(M){2 Iv4 + v }. (23)

In equation (22) the quantities v, and v. are evaluated through the utiliza-

tion of the solution obtained for equation (16) in conjunction with equation

1 (22). That is to say

I V __l Re{ F(E)},

I -Im{Ff)},

where

-(E t BC + DA i.

r()= ( r -v F2,, e

Ir (B - DE 0e)

i On the portion of the airfoil surface wetted by subsonic flow we have

II (, 0 a >  >  b

On the remaining portion of the unit circle, i.e., the sonic line, an

l arbitrary distribution for the stream function, ip, is prescribed, viz.,

I 1 ,) - sW g (W,)  Wa <- < 6

The compressible far-field stream function, 0,, is related to its incom-

pressible counterpart, I., viaI
I
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1

I ___ qe ir log( °  (24)K Im{ o  ) o o((&0 01 0 I0

Equation (24) is a consequence of the fact that, at point "I" which presents

I infinity in the &o-plane equations (20) reduce to the familiar Cauchy-

Riemann equations (or incompressible flow equations) expressed in polar

Icoordinates. Thus the complex potential defining the far-field stream
I function is that for an incompressible flow, T.., which is related to its

compressible counterpart, ., via equation (24). Equation (24), in conjunc-

I tion with equation (22), is then employed in expressing the far-field

boundary condition in the &-plane.

The boundary value problem for the stream function is now complete, and

I equation (22) is solved iteratively using a sixth-order accurate fast

Poisson solver devised by Roache. The stagnation streamline leaves the

I contour of an airfoil at a cusped or wedged trailing edge. This defines, in

direct analysis, the amount of circulation around the airfoil and the loca-

tion of the stagnation point near the leading edge. For an indirect method

l such as the present one, the situation is exactly the reverse: Since the

(mapped) stagnation point location is given, we have to vary the circulation

l until the stagnation streamline reaches the surface exactly at the stagna-

tion point. The mapped location T of the trailing edge results from this

adjustment and the trailing edge shape is then cusped: In the computational

I plane the stagnation streamline leaves the airfoil contour at T at a 900

angle.

I The results for the gradients *, and *Z along the elliptic boundary

consisting of the subsonic portion of the airfoil and the sonic line are,I
i 

U
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then utilized in finding the inverse-map to the physical plane, equation

(11), which can be written as

dx() = I {K(v)Cos(e)ip- - l Sin(e)*}dw,

and (25)

j ) = l [K(v)Sin()P- + I Cos(6P}dW'.
q r p

Equations (25) are numerically integrated along the unit circle starting

from the trailing edge T on the airfoil's lower surface moving toward the

stagnation point S and finally ending at the trailing edge T on the air-

jfoil's upper surface, i.e.,

I x x0 + I dx(),

i1 (26)

Y = Yo + dy().

'T

I The resulting airfoil configuration is then checked to see if it has a

reasonable thickness distribution. If not, then the input design parameters

must be altered and the design procedure repeated. When a suitable airfoil

configuration is found, the second of equations (20) is then numerically

integrated to find the potential distribution along the elliptic boundary,

I i.e.,

0(0,4) = o T) + J K(v)i, d . (27)I r

I
I
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I Results obtained from the solution of the subsonic flow equations (20)

on the sonic line are then used as initial values for solving the supersonic

I flow equations (15) in the hodograph plane using the method of character-

istics explained below.

Supersonic Flow Domain

It follows from equation (15) for the flow in the embedded supersonic

I region, where M > 1, that both , and € satisfy the linear wave equations

I and

I vv eB -K(v) [aK;] 3 V'

I which have characteristics of the form

d ±l (28)

Introducing the characteristics coordinates {, n defined by
i i = ) + e,

(28a)

I n =V -,

and reformulating the partial derivatives in equation (15) in terms of the

I new coordinates, we obtain

I E . K(v) $,

i and (29)

*n z -K(v) n '

I Equations (29) may also be expressed as

I I'
--- ""-- -". .
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I on = constant d + K(v)dip = 0,

I and (30)

j on n = constant d - K(v)d* = 0.

i With the stream functions 4s (e) and the potential .s(e) data known on

the sonic line with coordinates xs(e) and ys(e), we proceed to solve the

j compatability equations (30) holding along the two families of characteris-

tics using a step-by-step numerical scheme (Massau finite difference scheme).

IThe basic concept of this scheme is the following:

Through each point A,B,C,D,E,F, of the sonic line (line AF in Figure

(6)) two Mach lines pass, one of the first family, n = constant (al, bl , cI,

I ...f1 ), and one of the second family, = constant (a2 , b2, c2,...f 2 ).

Since the flow properties at the points of the line AF are known, the con-

I stants of equations (30) for each characteristic line aI...f l , a2...f2, at

each point of AF, are also known. Consequently, equations (30) applied

along two characteristics of opposite families, e.g., b1 and a2 of Figure

1 (6), give two equations relating *G to *G These can be solved to obtain

l and , at point G as functions of * and i at the points A and B, viz.,

OG 2 (*A + Y K(v) (A" B)1 (31)

In (31), if we think of v as a specified function of & and n on a rectangu-

lar grid, the coefficient K(v) may be approximated by average values such

that the numerical step-by-step scheme becomes second-order accurate in the

mesh size, h. The flow deflection angle, 0, and the Prandtl-Meyer function,

v, are evaluated at the grid nodes using (28a).j
I!II .... . .. . . .
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I Having solved for the flow properties at all grid nodes, we then

I proceed to search for points of zero stream line values as they represent

points on the airfoil upper surface.

I The inverse transformation from the hodograph plane to the physical

plane is given by equation (11), which we can write at every grid point as

dx = Cos(e) d - Sine)di,q pq

1 (32)

dy slnjvj do + C6s(e) d*.dy =-- pq

The Jacobian of trnsformation is

1(¢ e - o ) "  (33)I pq v

I Utilizing equations (15), we find that for supersonic flow

| pq

I which indicates the possibility of a vanishing Jacobian whenever lipl

iu. It can be easily shown that this condition is satisfied whenever a

I ip = constant line is tangent to the characteristics in the hodograph v-e

plane, i.e., whenever

I or

iu0.

The locus of points in the hodograph plane for which J - 0 is known as a

T limit line. In the physical plane the image of such a line is a cusped

.,(mII ................ I '" T" --. .
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I curve along which the physical surface can be thought to be folded upon it-

self. Such limit lines indicate the inconsistency of the sonic line data

with shock-free flow. Thus, they are only acceptable if they occur below

the airfoil's upper surface. However, if they occur above or on the air-

foil's upper surface, the sonic line data must be altered by adjusting the

Iinput subcritical pressure or the sonic line stream function distributions

or both, and the design procedure repeated.

j The Use of the Computer Program Package

The computer program package consists of sixteen FORTRAN IV sub-

li routines performing calculations and data transfer. The package makes use

of two permanent files for results to be retained and one file for input

data.

For a specific airfoil design the program has to be operated in the

following manner:

a -- Using the input Mach number and, for supercritical airfoils, the sonic

aline stream function distributions, both of which must be reasonable,

in addition to the two design parameters % and a, we obtain a

JI subsonic boundary configuration and have it displayed on a computer

terminal with graphic capabilities.

b -- The level of the input Mach number distribution on the lower surface

(0< w < ir) is moved slightly in order to shift the location of the

far-field singularity in the computational piane. This in turn is

[sufficient to reduce the x-gap of the trailing edge of the resulting
configuration to a preset value (e.g., 10-3).

I c -- The input Mach number distribution is then altered in the vicinity of

the stagnation point of the resulting configuration to reduce the

y-gap at that point.

1IU
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I d -- Once an acceptable subsonic boundary configuration (displayed on the

terminal) is obtained the supersonic flow field computation is then

carried on to determine the airfoil coordinates under the sonic line.

If a limit line is encountered in the supersonic flow domain, steps

a through d are repeated for modified input Mach number and sonic

Iline stream function distributions.
Figure (7) is a flow chart illustrating the design procedure discussed above.

COMPUTATIONAL RESULTS

In this section, a number of numerical computational results are pre-

sented, and some experience with the algorithm is discussed. A few examples

[i of airfoil designs are presented in Figures (8) through (20). The airfoils

cover a range of free-stream Mach numbers and lift coefficients. A comparison

)I with results obtained from the direct computation of the flow field utilizing

the designed airfoil geometry as input is also illustrated in Figures (16)

and (20) for a subcritical and a supercritical airfoil respectively. The

I analysis code, FL06, devised by Jameson 14 utilizes a finite-difference

method to solve the governing equations iteratively after mapping the airfoil

[ into the unit circle.

For the design of subcritical airfoils with cusped trailing edges,

Figures (8) through (15) illustrate the different input Mach number distribu-

[tions required for the design procedure and the resulting airfoil shapes at

M = 0.573, 0.589, and 0.622. Through a study of the above airfoils we have

[l demonstrated that small modifications in the input Mach number distribution

near the stagnation point have a substantial influence on the y-gap at the

Iairfoil trailing edge and, hence, on airfoil closure. That is, increasing

[ the slope of the Mach number distribution at the stagnation point results

I



I 20

in an airfoil with a smaller nose radius and consequently a smaller thickness

f to chord ratio; this ultimately results in a smaller y-gap at the airfoil

trailing edge. Experience has shown that in the process of minimizing the

I y-gap at the trailing edge the level of the input Mach number distribution

has to be altered on the lower surface or the upper surface, or both, to

maintain the x-gap at a present value, e.g., 10-3 .

I Figure (16) compares the results obtained from analysis computation

of the flow field utilizing the designed airfoil geometry shown in Figure (9)

as input. Results obtained from both the design and analysis show good

[agreement except near the trailing edge.
The input Mach number distribution for a slightly supercritical airfoil

.(with a cusped trailing edge at M. = 0.642 is shown in Figure (17). Results

obtained from the two stages of the design procedure, i.e., computation of

I [ the subsonic boundary configuration and the complete airfoil shape, are

illustrated in Figures(18,19). It should be mentioned here that while the

y-gap at the trailing edge for subcritical airfoils can be controlled easily,

Ii more effort is required in the case of supercritical airfoils. This is due

to the representation of the sonic line as part of the subsonic boundary

Iconfiguration (see Figure (18)).
Figure (20) illustrates a comparison of results obtained from the direct

computation of the flow field of a supercritical airfoil with cusped trailing

[edge at M, = 0.75 resulting from the design procedure invoked here with a

different solver for the stream function equation. It can be noticed that

Igood agreement is obtained for the subcritical pressures. The slight

disagreement between the supercritical pressures that is observed is due

to the numerical difficulty in computing the normal derivative of the streamr

1i .. ..r. .
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I
function along the sonic line; this has a direct effect on the sonic line

coordinates and the supercritical pressures.

I CONCLUSION

Based on hodograph theory an efficient design procedure has been

developed that can be used for the aerodynamic design of subcritical as

well as shock-free supercritical airfoil sections. An analysis of the

numerical solutions obtained with this design procedure indicates that only

one airfoil configuration is obtained for a desired input target pressure

and free-stream flow conditions. Experience has also shown that the input

IMach number, the free-stream Mach number and the sonic line stream function
distribution cannot be prescribed independently of each other if a practical

airfoil configuration is sought. Subcritical airfoils with a target pressure

j distribution and shock-free supercritical airfoils with a target subsonic

pressure distribution can be found with modest effort when the algorithm

I is in the hands of an experienced user.

Within the framework of our design procedure it seems possible that the

procedure can be extended further to study a large class of aerodynamically

interesting airfoils and their corresponding pressure distributions. Moreover,

while the results are given for inviscid flow, the same procedure can be

I employed, iteratively, with a boundary-layer calculation (utilizing airfoils

with an open trailing edge) in order to achieve viscous airfoil designs. For

supercritical airfoils, the shock-free pressure field should make the boundary-

f- layer calculation reliable.

From the engineering point of view, the method was found to be sufficiently

I •accurate and flexible providing results at moderate cost. Indeed, less than

i

if m~mm~~ mi dm~l u
U •
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1 a minute of CYBER 175 CPU time is required for supercritical airfoils;

even less is required for subcritical airfoils.
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?igure 1. Sketch of shock-free flow past a lifting
airfoil (stagnation point S, trailing
edge T, far-field I, branch point n).
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Figure 2a Figure 2b

Figure 2. Hodoraph representation of the flow{ field sketched in figure (1).
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Figure 3. Airfoil subsonic-sonic boundary in the E-
plane (stagnation point S, trailing edge
T, far field 1).
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The location of the trailing edge T is

I- not known in advance.

I'



na

Ia
a

Fiue5Iifi'usni-oi onayi h
copttoa ln (tgainpitS

triigeg ,fa il ,bac
pon )



A b
IC

I a I

Ci

X4 XG) a 2 V (Prandtl-Meyer

- De Function)

yNO
I2

of ch-2ersis

Fiue6 optto ftesproi lwfedi
th oorp ln v-)uigtemto
of chrcersis



II

0O

ti 3

'"Iuw oO

- - - - - -- -- - - - - - - - - - -



I
I

1o
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Airfoil 818657
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Figure 8. Input YAoh number distribution for a sub-critical airftoil with cusped trailing edge[ at Mm "0.573.
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Figu 10. Input Mh number distribution for a sub-
critical airfoil with cusped trailing edge
at M. -573.
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Figure 12. Input Mach number distribution for a sub-

critical airfoil with cusped trailing edge
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